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The quantum group structure of SUq(2) is described. The property ofquasitriangular- 
ity and the Yang-Baxter equation are reviewed. A universal R-matrix for this algebra is 
written down. It is then shown in detail that this R-matrix satisfies the triangularity equa- 
tions of Drinfeld and the Yang-Baxter equation given the algebraic SWq(2) commutation 
relations. In physical terms, the group can be realized as the q-rotator. A specific physical 
application to diatomic molecules is presented. 

1. I n t r o d u c t i o n  

Quan tum groups have assumed an important  role in the description of  m a n y  
physical theories and have generated many  interesting applications, as several 
recent papers have indicated [1,2]. It has even been found possible to find quan tum 
group symmetries in classical systems. The term originates with Drinfeld [3] and 
has come to mean  certain special Hopf  algebras which are nontrivial deformat ions  
of  the enveloping H o p f  algebras of  semi-simple Lie algebras. It is well known that  
the quan tum systems which are described by quan tum symmetries reduce to the 
quan tum systems described by Lie symmetries when the deformat ion parameter  
approaches unity. A recent introduction to the uses of  quan tum groups in physical 
systems can be found in [4,5]. 

It is the purpose here to present an introduct ion to the H o p f  algebra structure 
of  the quan tum group SUq(2) and a simple introduct ion to the Yang-Baxte r  equa- 
tion, with a simple proof  in the case of quasi-triangularity. It can be applied to the 
quan tum group SUq(2) and a set of  H o p f  relations will be given. It is then the intent 
to show that  an R-matr ix can be written down which satisfies the required proper- 
ties, as well as the Yang-Baxte r  equation. These ideas lead to powerful techniques; 
for example, the concept of  braided bialgebras, which is due to Drinfeld, provides a 
systematic method  of  producing solutions of  the Yang-Baxte r  equat ion [6]. 
Al though a relatively s traightforward algebra is introduced here, it is hoped that  
the great  detail that  is provided will fill a gap in the literature. 

Finally, an application of  these ideas to a particular system of  physical interest 

© J. C. Baltzer AG, Science Publishers 



218 P. Bracken/The quantum group SUq 

will be presented.  The  q-rotator  model  will be described. This turns out  to be an 
exactly solvable system. It is the q-deformat ion of  the rigid ro ta tor  model  with the 
q u a n t u m  group symmet ry  SUq(2). The energy of  the system is given as the eigenva- 
lue of  the Casimir  opera tor  in terms of  the deformat ion  parameter .  For  a par t icular  
d ia tomic  molecule,  the frequency of  emiss ion-absorpt ion can be evaluated and fit 
as a funct ion  of  the rota t ional  quan tum number  J. In fact, this model  can be under-  
s tood  as a nonrigid  rotator ,  and the deformat ion  paramete r  is the very quant i ty  
which characterizes the nonrigidity.  

2. Algebraic  structure o f  the quantum group 

In order  to provide an int roduct ion,  and to motivate  what  follows, let us intro- 
duce some s tandard  te rminology [6,8,9]. The area is extremely rich in terms of  con- 
cepts and informat ion ,  and we will only give what  is essential for this article. A 
vector  space H that  is endowed with a mult ipl icat ion # : H ® H --~ H ,  and a unit  
r 1 : F --~ H is called an algebra with unit  if and only if 

r/(1)h = #(1 ® h )  = p.(h® 1) -- hr/(1) 

for all h E H and 77(1) = I, with I the identity on H,  the sequence of mapp ings  
I ® #, # c o m m u t e s  with # ® I, #, and that  the element rl(1) of H is a left and  a right 
uni t  for ~. Dualizing the above definition, the co-algebra with coproduc t  is 
obtained.  There  is a compat ibi l i ty  condit ion between these two structures but  it 
need not  concern us here. 

A bialgebra is a quintuple  (H, #, % A, e) where (H, #, 77) is an algebra and (H, 
A, e) is a coalgebra which verify a set of equivalence conditions.  Given an algebra 
(H, #, r/) and  a coalgebra (C, A, e) a bilinear m a p  will be defined, the convolu t ion  
on the vector  space of  linear maps  f rom C to H: 

0 c • g ) ( x ) =  ~ - } f ( x~ )g (x  ") 
(x) 

for any e lement  x E C. An element  7 of  the space of linear maps  on A is called an 
ant i -pode  if 7 is inverse to I under  the convolut ion.  A H o p f  algebra is a bialgebra 
with an ant ipode.  A m o r p h i s m  of  H o p f  algebras is a linear mapp ing  between the 
under ly ing  bialgebras commut ing  with the antipodes.  

The  q u a n t u m  group  SUq(2) is the q-deformat ion of the Lie algebra su(2) with 
the fol lowing algebraic c o m m u t a t i o n  relations: 

[Jq, Jq] = [2Jq3]q, 

3 J: :tzjqi [Jg,Jg] = . (1) 

The  H o p f  opera t ions  will be in t roduced on this algebra, and then they will be used 
to cons t ruc t  and  manipu la te  an appropr ia te  R-matr ix for this algebra. To do so, let 
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us specify the Hopf operations. First of all, the coproduct will be defined in terms 
of the generators as follows: 

A ( j q 3 ) = j q 3 ® l + l ® J q  3, 

A(J  +) =aT+ ®q2aa + l Q J q ,  (2) 

A(Jq)  = J q  ® 1 + q-ZS~ @ j ; .  

The antipodal mapping acts as follows: 

s(:3)=_j3 i q  d q ,  (3)  

and the co-unit as 

e(Jq i ) = e ( J q  3 ) = 0 ,  e (1)=  1. (4) 

Following Drinfeld, one says a Hopf algebra A is quasi-triangular if there exists 
an invertible element R c A ® A such that 

croAR = RA, 

(id ® A)R = R 1 3  " R 1 2 ,  

(A ® id)R = R 1 3  • R 2 3 .  

(5.1) 

(5.2) 

(5.3) 

The following notation has been used. Given any element V E A ® A which can 
be written as V = ~iai ® bi, then, 

g12 = ~,,iai ® bi ® 1 , g13 = 2iai ® 1 ® bi, V23 = P, i l  @ ai ® hi. (6) 

The operator a which occurs in (5) is defined by cr(x ® y) = y ® x. 

3. Quasitriangularity o f  the algebra 

The importance of quasi-triangular Hopf algebras is that the canonical element 
R satisfies the quantum Yang-Baxter equation: 

RI2  " R13 -R23 = R23 • R13 • R12 .  (7) 

This can be verified using the equations in (5) in the following way. The R-matrix 
can be written for the purposes here as R = Y'~i ai ® bi. It then follows that 

R13R23 = (A ® I ) R =  ~ A(ai)®bi = ~ ( R - i A T ( a i ) R )  ®hi 
i i 

= R-{21R23R13R12. 
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An R-matrix will be written down for this algebra, and it will be shown in detail 
that  the quasitriangularity conditions are satisfied. In terms of the J operators, the 
universal R-matrix will take the following form: 

~__.~ qn(n+l)/2(1 _ q-2)n 
R =  n=0 -~qi  q2(j3q®jxq)(J~)n @ ( j q  )n " (8) 

This will be shown systematically by verifying each of the equations in (5) sepa- 
rately. To proceed, a number  of lemmas are required which will be referred to 
repeatedly, as well as the following notation: 

q,,  _ q - , ,  

[r/]q - -  q _ q-1 ' 

In]q! --~ [?/]q[n - -  1]q-..[2]q .[1]q, 

In]q! 

These are rational functions of q over Q. It is also found useful to introduce q as 
an exponential, that is q = e h. Both notations will be used. These lemmas, which are 
required to finish the proofs, are collected and proved in a group in the appendix. 
However, one which will be used frequently will be presented here. 

L E M M A  1 

Suppose the elements X, Y and Z satisfy [X, Y] = Y Z  and [X, Z] = O, then 

ehX ye-hX = ye hZ . 

There is an elegant demonstrat ion of this. The first commuta tor  implies 
X Y  = Y X  + Y Z  = Y ( X  + Z ) .  By induction one has X n Y =  Y ( X  + Z )  n. 

Therefore, if IX, Z] = 0, 

oo , ~ 7 , h ,  = )re h(x+z) _ YehXe t'z e"xr= V ' £ x ' Y =  (x + z)" 

To show that (8) satisfies (5.1), let us define 

qn(n+l)/2(1 _ q-Z)n 

A. = [n]q! 

Applying cr to A, the left-hand side ofeq. (5.1) becomes 
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o® 

(J+ ® 1 + eZt'Jq 3 ® J+) V" A o2h(J~oJ3)(f+~ n 
n = 0  

o® 

= ~ A,,(( J+ ® 1)e2h(Jg®Jq~) (Jq+)" ® (Jq)"+(e 2~:~, ® J+)e2h(Jg®Jg)(J+)" ® (Jq)") 

IX) 
3 3 3 3 3 3 n = ~ An(eZ~(:go:g)e-2h(:;o:g)(j+ ® 1)e2h(Sg®:g)(j+) ® (jq)n 

n=l 
2h(J3q®J~) -2h(Ja®J 3) 2hJ 3 + 2h(J3®J ~) + n + e  e q q (e , ® : q ) e  q q (jq) ®(:q)n 

o® 

__--~"~AL...a ''n\''(°2h(J'®J')(I+q q ,,~q @ I) - (l @ e-2hJg)(J;)n@(J;) n 
n = 0  

+ eZh(y~®.r3)( 1 + :+)(j+)n ® (jq)n) 

- V"  A e2h(j3®j3)rJ + ®e-~J3q)(J;) n ® (jq)n 
- - / _ . . , j  n ~ , q  

n = 0  

o® 
3 3 n -!- - -  n + Z A"e2/'(:i~®:';)(J+) ® J; (J;)  " 

t l = 0  

The lemma above and Lemma 3 in the appendix have been used. If we substitute 
the commutator from the lemma, this becomes 

0(3 ~_, A,,e2h(J~®J~)(J + N e-2hj3) (J+)  " ® ( j ; )n  
n = 0  

o(3 

+ ~ A,,e2h(J3®J~)[nlq[2 4 + n - llq(J+)" ® (jq).-1 
n=l 

(3O 

- -  n -t- + Z Ane2h(e®J3q)(j+)n ® (Jq) J; " 
n = 0  

On the other hand, the right-hand side of the equation is given by 

o® 

- n + e2hJ~ A,~e2h(J~®s3)(J+) n ® (J; ) (J; ® + 1 ® J+) 
n = O  

o® o® 

= ~_~ A,,e2h(::*:3)(J+) "+1 ® (Jq)% 2hJ3 + ~ A,,eZh(J3®:q)(:+) n ® (Jq)"Jq 
n = O  n = O  

o o  

= ~ Ane2h(J3®J3)(J; )n+l ® q2ne2M~(Jq )n + Z Ane2h(j3OJ3q)(J; )n ® (jq)nj;" 
n=O n=O 

If we equate both sides, a very simple expression results, namely 
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oo 

~-'£ a ,,zt,(J~®J')(r+ e-2hJg) .*n~ - q ~,~q @ (j+)n ® (jq)n 
n = 0  

-1- Z Ane2h(Ja®e)[n]q [2J3 4- n -- 1]q(3+) " ® (jq )n 
n=l 

IN) 

= ~ Ane2h(J~®j~)(1 @ q2ne2Mg)(j+)n+l ® ( jq)n.  
n = 0  

Changing the limit on the second sum, and putting all terms onto the left-hand side, 
the following equation results: 

Oo 

~(Ane2h(3~e'J~)(1 ® e -2h J3 -- 1 ® e2hJ~q 2n) 

n = 0  

+ An+le2h(j3q®Aq)[n + 1]q[2J~ + n]q)(d+) n+l ® (jq)n = O. 

In a slightly different form, this is 
oo 

~_, e2h(J~®'r~ ) (An('(1 ® (q-"e-2"'r~ - ('e2"J~)) + An+l-[n + 1]q 
n=0 

( q,,q2hJg__q-,,q-2hSg)~ 
• 1 N q 7 q  "£'~ ; ; "  (j+)n+l @ ( jq)n.  

This equation holds precisely when the following equation is satisfied: 

AnN n = An+l[n 4- 1]q(q - q-1) - l .  

This is proved in Lemma 4. 
To prove (5.2) and (5.3), the following theorem is required. 

THEOREM 

A(J+) n =  ~ e -r('-r)h (J;)" ® 
q 

A( jq )n  = ~ e-r(n-r)h e-2(n-r)hJ~(jq)r ® ( jq)n-r ,  

r=O q 

r~O \ - -  / 

These can be proved by induction on n. Only the second identity will be shown. 
Using (2) and the homomorphism property of A, one has 
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A(4)*  = A ( 4 ) A ( 4 - )  *-1 

~-' E J --= ( 4  @ 1 - J - e - 2 h J g  @Jq)Ze - r ( k - l - r )h  k -  1 

r=O r q 

. e-2(k-l-r)":~(J;/ ® (J;)k-~-~ 

= Se_r(k_l_r)h k -  1 j_e_2(k_l_r)hJ3(jq) r ®(jq)k-l-r 
r=O r q 

+ F_, e-~(~-l-r)" k -  1 e_2(~_~lh:~(4_)~ ® (j;)k-r .  
r=O r q 

Using the identity 

e2(k-l-r)hJXq Jq e-2(k-l-r)hJ3 = Jq e-2(k-l-r) h ' 

the equation above becomes 

k, I 1  
e_(r+2)(k_l_r) h k -  1 e-2(k-l-r)hJ3(jq)r+, @ (jq)k-l-r  

r=O 1" ~ q 

~' Er] q- Z e-r(k-l-r)h k 1 

r=O 

= ~ e_(r+l)(k_r) h 1 
r=l  1 q 

k-1 [k  - 
+ e-2kh.P ® (jq)k + Z e-r(k-l-r)h 

r=l  r 

k ] = ~ e_r(k_r)h_(k_r)h+(k_r)he_(k_r) h [ 1 
~=1 L r -  1 

~-, [ ] + e-2khS~ ® (j~)k + ~--~e-r(k-l-~)h-rherh k - 1 
r=l r 

e-2(k-r)hJ3(jq)r @ (jq)k-r 
q 

e-~(~-~)~:~(~q) r ® (J~)~-~ 

1 ]qe_2(k_r)hJ~(jq)r @ (jq)k-r 

e-2(k-~)hJ2(jq)r ®(jq)k-r + (jq)k ® 1 
q 

e-2(k-r)hJ2(jq)r ® (jq)k-r 
q 

k x [ l  
= (jq)k ® 1 -4- ~ e-r(k-r)h(e -(k-r)h k -  1 

r=l  r 1 q 

.+_ erh [ k -- l l )e-2(k-r)hJ3q (Jq )r ® (jq )k-r + e-2khJ3q @ (jq )k " 
r q 

Using the identity 
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which follows from the usual q-binomial coefficient identity, Lemma 5, by repla- 
cing q with q-1 and using [n]q = [n]q_,, the equation above takes the form 

(jq )k ® 1 -I-- Z e-r(k-r)h e-2(k-r)hJ~ (J-q )r ® (jq )k-r + e-2kM~ ® (j~)k 
r= l  q 

= E e-r(k-r)h e-2(k-r)he(jq )r ® (jq)k-r.  
r=0 q 

It is required to prove that 

(A ® id)R = R13R23 • 

Here, R is the R-matrix given in (8). To evaluate the left-hand side, we use the iden- 
tity for A(J+) k given above, then with n = m + r, 

(A ®id)R 
n ~ k  r . ] r = O  q 

3 3 3 3 [ m + r ]  q2rj3 = e2h(Jg®laJq+l®J~aJ~) Z Am+rq-rm (1 ® ® 1)((J;)  r 
m,r m q 

® (j+)m ® (jg)m+r). 

Using the definitions 
oO 

R13 = e 2'(y~®'®J~) ~ An(J+) n ® 1 ® (ji)n 
n=0 

O0 

R23 = e 2h(l®'r~O:g) ~ A.(1 @ (Jq)" @ (Jq)"), 
n=O 

the product R13 • R23 is given by 

e2h(J~®l®J~) E An(J; )n @ 1 ® (J?)ne2h(1NJ~NJ~)Am(1 @ (j;)m @ (jq)m) 
?n~n 

3 3 3 3 3 - -  nq - t t t  =e2h('l~ol®J~+l®J~®J~)EA,,Am(l®q2'd'~®l)((J+)'~®(J+)m®(jq) ). 
tl~m 

To show that both sides of(5.2) are equal, it then suffices to show that 

m] 
q-mn Am+n = AmAn. 

m 
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This is just Lemma 4.2. 
Finally to verify the identity 

(id ® A)R = R13R12, 

one requires the identity for A(Jq) n, then with n = rn + r, 

(id ® A)R = E An(id®A)e2h(j3®j3)Z q-rm[ m + r ]  (j+)n®q_EmJ3(jq)r ® (jq)m 
n r r q 

-rm(td@A)e2h(J~®J~)[ m + r  ] (j+)m+r@q-2mJ~(jq)r@(jq)m ~'~ Am+rq " 3 3 
m,r F q 

3 3  3 3 E _rm[m+r] q_2mj3 = e 2h(J~®J;®l+J~®l®J;) Am+rq (1 ® ® 1)((J+) m+r 
m,r F q 

@ (jq)r @ (jq)m). 

Recall that 

R13 = e 2h(J3q®l®J~) Z An(J+)n @ 1 ® (jq)n 

and 

R12 = e 2h(J~®J3®l) Z Am(Jq )m @ (jq)m @ 1. 

Then, the right-hand side is given by the expression 

e2h(j3Nl®j3q) E An(J+)n ® 1 ® (jq)ne2h(J~®J3q®l) Z Am(J+)m ® (jq)m @ 1 

= e2h(J~®l®J~+Jg®Jg®l) E A.Am(1 ® q-2.:g ® 1)" (j+)n+m @ (jq)m @ (jq)n. 

Both sides are equal again by Lemma 4. 

4. Physical application-q-rotator model 

In addition to the deep algebraic structure presented here, it is worthwhile to 
show that the quantum group SUq(2) has a useful physical application. Consider 
the q-rotator model, which is an exactly solvable system. This is the q deformation 
of the usual rigid rotator model with the quantum group symmetry SUq(2). To treat 
this system, it is necessary to write down the Hamiltonian for the system [7]. This 
Hamiltonian is given as follows: 

nq,rot = h2 Ci,q (13) 
2I ' 

where Cz,q is the Casimir operator for the quantum group SUq(2): 

Ci,q = JqJ~ + [j3q]q + [j~ + l]q. (14) 
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Also, the Jq~, .13 are generators of SUq(2) and can be realized in terms of generators 
of the SU(2) in the following way: 

j+ ( [ J 3 _ k - J ] q [ S 3 - 1 ~ q )  1/2 

\ (j3 + j ) ( j 3  l 

([j3_+_j]q[J31 _j]q~l/2 
Jq = J - \  (j3 + j ) ( j 3  1 - j )  J 

j 3  = j3 , 

wherej is an operator formally expressed as follows: 

l (sink"/z [~]2q ) 
j = _ ~ +  sinh-1 T kC/,q q_ )1/2 . 

When q is not a root of unity, it is easy to see that the representation of SUq(2) 
may be those of SU(2) up to a phase. Ifq is a root of unity, the approach must be dif- 
ferent. Consequently, the representations, in coordinates, of SUq(2) can be chosen 
as spherical harmonics, 

= r jM(o ,  p) .  

This means the representations of the quantum group SUq(2) are completely redu- 
cible, while the action of the Casimir operator Ci,q yields 

Ci,q~JM = [J -t- llq[J]q~)JM. 
The q-rotator model is typically applied to diatomic molecules, and the results here 
will be especially relevant to molecules consisting of unlike atoms such that there is 
a significant internal dipole moment. By considering the dipole transition matrix 
elements [10], it is found from the orthogonality of the spherical harmonics that the 
matrix elements vanish unless AJ  = +1. The selection rule of the emission 
(absorption) of the q-rotator model is then AJ  = +1. The emission absorption 
spectrum is given by 

Ab,_=Eq,rot(J -t- 1 ) -  Eq,rot(J) = B([J + 1]q[J q- 2]q-  [J + 1]q[J]q) 
hc 

where B = h/8~Ic. Using the definition of [X]q, this can be written in a way which 
is more suitable for calculations: 

q2(J+l) _ q-Z(J+l) _ sinh 27(J + 1) 
[ J +  1]q([J-t-2]q-[J]q)= q _ q - 1  -- sinh7 

Substituting, one has 
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Table 1 
A fit for the Lyman 0-2 R band in the H2 molecule using equation u0 = 81153.35, H = -2259.29 
and q = 2.91187. The starred numbers have been interpolated. 

J v v ~ p  I v - Voxp I 

0 82155.24 82155.24 0 
1 82949.33 82125.75 823.6 
2 83370.93 82026.75" 1344.2 
3 83332.60 81861.90* 1470.7 
4 82842.29 81631.51" 1210.8 
5 82001.69 81337.61" 664.1 
6 80985.14 80985.14 0 
7 80003.48 80572.64 569.2 
8 79260.30 80102.64* 842.3 
9 78909.75 79588.80 679.1 
10 79024.53 79024.53 0 

Av = B sinh(2"y(J + 1)) 
= H s i n h ( 2 7 ( J  + 1)) = Asin(2g(J  + 1)), (15) 

sinh 7 

where A = ill .  By fitting the parameters g and A accordingly, values for the emis- 
sion-absorption spectrum can be calculated and compared to the corresponding 
experimental values. 

Two fits have been performed, first on the molecule H2, and then on the molecule 
HCl, (Tables 1 and 2). The molecule H2 is symmetric, and distorted largely by rota- 
tion and the dipole moment should play less of a role than in the molecule HCl, 
which has a rather strong moment. Consequently, we would expect eq. (15) to work 
most consistently on HCl. In spite of this, the numbers for H2 in Table 1 provide a 
surprisingly good fit to the R-branch of the 0-2 band. The numbers obtained from 

Table 2 
A fit for the emission (absorption) spectrum of HC1 using v = Hsin(2g(J + 1)) with the values 
H = 967.49 (cm-1 ) and g = 0.010744. The experimental numbers are from Herzberg [10]. 

J /-* /]exp I v -/ ' /exp [ 

0 20.787 
1 41.566 
2 62.325 
3 88.055 83.03 0.03 
4 103.747 104.1 0.35 
5 124.391 124.3 0.91 
6 144.977 145.03 0.53 
7 165.497 165.51 0.01 
8 185.940 185.86 0.08 
9 206.298 206.06 0.08 
10 226.560 226.50 0.06 
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(15) for the molecule HC1 provide a much more  consistent fit, and are relatively 
accurate.  The experimental  numbers  for H2 are from the paper by Dabrowski  [11] 
and the experimental  numbers  for HC1 are found in Herzberg [ 12]. 

Appendix 

LEMMA I 

14, (4")°I: <. 
The p roof  is by induction on n. Taking the equation above as the induction hypoth-  
esis, one has 

[ j 3  ( j + ) n ]  = 4 ( 4 ) 3  + n _ (4+ n) jq3 

__ .[3 (.].+ ]n-1.]-+ + n-1 3 + ( j q ) n - I  3 + + n 3 
- -(:~) 4(4) + 44 -(Jq) 4 - q w q  ; -q 

= i n - 1 ) { J g )  ° + { J g ) " - 1 4  ~ = h i 4 + ) "  

LEMMA 2 

[ j q ,  ( j g ) n ]  = [n]q[2j3 4_ n - 1]q(Jq ) n-1 . 

The p roof  is by induction on n. Suppose this equation holds up to n - 1. Consider 

[j-qb, ( j q  )n I : [ jq ,  ( j q  )n-1]jq Av ( j q  ) n - l [ j g , j q  1 

= [n - 1]q[2Jq 3 + n - 2]q(Jq) "-1 + (Jq)"-~[2j3]q. 
Since 

q24 - q-24 
[2Jq3lq - q _  q-1 

and using 

(jq)n-lq2J3q = q2(n-1)q2J3q( jq)n-1,  ( j q ) n - l q - 2 J q  3 = q-2(n--1)q2Jq 3 ( j q ) n - l ,  

and simplifying, one obtains 

q2J~+2n-1 q-2J3+l  q-2Jq3-2n+ 1 [ j+ , ( jq )n]  = - - q  -2Jq3-1 - + ( j q ) n - I  

(q_q-l)(q_q-1) 

= [n]q[2Jq 3 -4- n - 1]q(Jq) n-1 . 
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LEMMA 3 

The following commutators  are required to use in the first lemma, so that  the 
exponentials can be permuted. First, 

® j , q , : ?  ® l] = 3 + 3 [jq,Jql®J; = j +  @j3 = ( j+  ® 1)(1 ®jq3). 

This implies that 

e-2hI:;®J~'/(Jq ® l)eZ"I';®J; / = (J+ ® 1)e-ZhIl®:; ~ = (Jq ® 1). (1 ® e-2h';) .  

Similarly, 

[:q3 ® j 3  e2h~ '3 ® jq]  = -3 2h.r' aqe q[j3,jg] = (e2h.ra ® j g ) .  (j~ ® 1). 

This implies that  

e-2h(J~®J~) (eZhJ~ ® j+)e2h(J~®:g) __ 1 @ j + .  

LEMMA 4.1 

Anq n = An+l{n q- 1 ] q ( q -  q - 1 ) - l .  

Expanding, one obtains 

An+l[n + 1]q(q - q-1)-l  = q("+1)("+2)/2( 1 - q-E)n+a 
[n + 1]q! 

[n + 1]q(q - q-l)-1 = Anqn 

LEMMA 4.2 

I q-ran Am+n = An, An. 
m 

Substituting for Am+n on the left-hand side, 

q-ran [n -}- re]q! q(m+n)(m+n+W2(1 - q-2)m+n = q(m2+n2+m+n)/2 (1 - -  q-Z)m+n 
[Ft]q![m]q! - ~ - ~ .  [Fi]q![m]q! 

= AmAn. 

LEMMA 5 

[;] ir k qq_qr-k 
q k 

By a direct calculation 

1] 
1 q 

r ~ k ~ O .  
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r ]  _ q - k [ r -  1 1]q! _ _ q-k(q~-k _ k Jq [ k  ] - - [ r -  (.(qr q-r) q-r+k) 
q [k]q![r - k]q! q ~--q-s-f / 

= qr-k [r-- 1]q! qk _ q-k 

[k]q![r - k]q! q - q-1 

= q r _ k [ r  1] . 

k 1 q 

No t i ce  t ha t  i f  one replaces q by q-1 and  then  uses [k]q_, = [k]q one ob ta ins  the 
result  

q llq 
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