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The quantum group structure of SU,(2) is described. The property of quasitriangular-
ity and the Yang-Baxter equation are reviewed. A universal R-matrix for this algebra is
written down. It is then shown in detail that this R-matrix satisfies the triangularity equa-
tions of Drinfeld and the Yang-Baxter equation given the algebraic SU,(2) commutation
relations. In physical terms, the group can be realized as the g-rotator. A specific physical
application to diatomic molecules is presented.

1. Introduction

Quantum groups have assumed an important role in the description of many
physical theories and have generated many interesting applications, as several
recent papers have indicated [1,2]. It has even been found possible to find quantum
group symmetries in classical systems. The term originates with Drinfeld [3] and
has come to mean certain special Hopf algebras which are nontrivial deformations
of the enveloping Hopf algebras of semi-simple Lie algebras. It is well known that
the quantum systems which are described by quantum symmetries reduce to the
quantum systems described by Lie symmetries when the deformation parameter
approaches unity. A recent introduction to the uses of quantum groups in physical
systems can be found in [4,5].

It is the purpose here to present an introduction to the Hopf algebra structure
of the quantum group SU,(2) and a simple introduction to the Yang-Baxter equa-
tion, with a simple proof in the case of quasi-triangularity. It can be applied to the
quantum group SU,(2) and a set of Hopfrelations will be given. It is then the intent
to show that an R-matrix can be written down which satisfies the required proper-
ties, as well as the Yang-Baxter equation. These ideas lead to powerful techniques;
for example, the concept of braided bialgebras, which is due to Drinfeld, provides a
systematic method of producing solutions of the Yang-Baxter equation [6].
Although a relatively straightforward algebra is introduced here, it is hoped that
the great detail thatis provided will fill a gap in the literature.

Finally, an application of these ideas to a particular system of physical interest
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will be presented. The g-rotator model will be described. This turns out to be an
exactly solvable system. It is the g-deformation of the rigid rotator model with the
quantum group symmetry SU,(2). The energy of the system is given as the eigenva-
lue of the Casimir operator in terms of the deformation parameter. For a particular
diatomic molecule, the frequency of emission-absorption can be evaluated and fit
as a function of the rotational quantum number J. In fact, this model can be under-
stood as a nonrigid rotator, and the deformation parameter is the very quantity
which characterizes the nonrigidity.

2. Algebraic structure of the quantum group

In order to provide an introduction, and to motivate what follows, let us intro-
duce some standard terminology [6,8,9]. The area is extremely rich in terms of con-
cepts and information, and we will only give what is essential for this article. A
vector space H that is endowed with a multiplication p: H @ H — H, and a unit
n: F — Hiscalled an algebra with unitif and only if

n(Dh=p(l@h) =phe1)=hnl)

for all h € H and n(1) = I, with I the identity on H, the sequence of mappings
I ® p, pcommutes with 4 ® I, u, and that the element n(1) of H is a left and a right
unit for p. Dualizing the above definition, the co-algebra with coproduct is
obtained. There is a compatibility condition between these two structures but it
need not concern us here.

A bialgebra is a quintuple (H, u, 0, A, €) where (H, u, ) is an algebra and (H,
A, €) is a coalgebra which verify a set of equivalence conditions. Given an algebra
(H, 1, n) and a coalgebra (C, A, €) a bilinear map will be defined, the convolution
on the vector space of linear maps from Cto H:

(f*)(x) =Y _f(x)g(x")
(x)

for any element x € C. An element « of the space of linear maps on A is called an
anti-pode if -y is inverse to I under the convolution. A Hopf algebra is a bialgebra
with an antipode. A morphism of Hopf algebras is a linear mapping between the
underlying bialgebras commuting with the antipodes.

The quantum group SU,4(2) is the g-deformation of the Lie algebra su(2) with
the following algebraic commutation relations:

-1 3
g Tql =127,

AR (1)
The Hopf operations will be introduced on this algebra, and then they will be used
to construct and manipulate an appropriate R-matrix for this algebra. To do so, let
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us specify the Hopf operations. First of all, the coproduct will be defined in terms
of the generators as follows:

AT =T1+1®J),
AU =Tfed +18J], 2)
AU =T, @1+q iR
The antipodal mapping acts as follows:
S(J;) = —J;, S(J;:) = _q:tqu:t, (3)
and the co-unit as
e(J;t)ze(J;’)ZO, el)y=1. (4)

Following Drinfeld, one says a Hopf algebra A4 is quasi-triangular if there exists
aninvertible element R € 4 ® A4 such that

50 AR = RA, (5.1)
(ld @ A)R = Ri3 - Rz, (5.2)
(A@id)RZ Ri3 - Rx3. (53)

The following notation has been used. Given any element V' € 4 ® 4 which can
be writtenas V' = ¥;a; ® b;, then,

Vio=%a; 05,1, Vh=2a48010b, Vi=X1Qa;®b;. (6)
The operator o which occursin (5) isdefined by o(x ® y) = y ® x.

3. Quasitriangularity of the algebra

The importance of quasi-triangular Hopf algebras is that the canonical element
R satisfies the quantum Yang—-Baxter equation:

Riz-Ri3-Ry3=Roz-Riz-Rya. (7)

This can be verified using the equations in (5) in the following way. The R-matrix
can be written for the purposeshereas R = ) ; a; ® b;. It then follows that

Ri3Ry; = (A® IR Z Ala;) ® by = Z(R-‘AT(a,-)R) ® b;

=Ry} (Z AT(a) ® b,-) R1»

= R}y RysR13Ry; .
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An R-matrix will be written down for this algebra, and it will be shown in detail
that the quasitriangularity conditions are satisfied. In terms of the J operators, the
universal R-matrix will take the following form:

0o /201 _ g2y
R:Zq (1-g7)

e ®)

q

This will be shown systematically by verifying each of the equations in (5) sepa-
rately. To proceed, a number of lemmas are required which will be referred to
repeatedly, as well as the following notation:

o] =y

q° q

These are rational functions of g over Q. It is also found useful to introduce ¢ as
an exponential, thatis g = ¢". Both notations will be used. These lemmas, which are
required to finish the proofs, are collected and proved in a group in the appendix.
However, one which will be used frequently will be presented here.

LEMMA 1
Suppose the elements X, Y and Zsatisfy [X, Y] = YZ and [X, Z] = 0, then

& Ye M = Yeh” .

There is an elegant demonstration of this. The first commutator implies
XY=YX+YZ=Y(X+Z). By induction one has X"Y =Y(X+2Z)".
Therefore, if [X, Z] = 0,

1 > hn n > hn n 1
SNy = X;EX Y = ng(XA—Z) = Ye'X*+2) = y X hZ

To show that (8) satisfies (5.1), let us define
qn(n+l)/2(1 _ q—Z)ﬂ

An = o

Applying o to A, the left-hand side of eq. (5.1) becomes
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(J; ® 1 +e2hJ ®J+ ZA ez;z(13®13)(]+) ® (Jq %

n=0
= 5_; An((J} ® 1) (T @ (17 )"+ (ezhfé ® J;) MBI (THY @ (7))
— ZAn(e2h(13®13)e—2h(J3®Jg)(J;r ® I)EZh(Jg®J;)(J;)n ® (J7)
q
n=1
+ 3211(13®J3 —2Iz(J3®J3)( 2hJ3 1 ® J+) 2h(]3®J3)( J+) ® ( J—)n
q

— ZAM 13®]3 J—+- ® 1) (1 ® E—Zhlg)(.];-)n ® (J—)n

H=

+ ezh(]q@];)(l + J;—)(J;-)” ® (J—)")

q
s (Pt o 13 n
= ZOA,,eZI(Jq@]'I)(J; ®e 7"’]@)(];)" ® (J;)
+2An€2h J3®J3 )n®J;-(Jq—)n
n=0

The lemma above and Lemma 3 in the appendix have been used. If we substitute
the commutator from the lemma, this becomes

e 3 73 a3 \n
ZA,,ezh(Jq@Jﬂ)(J; ®e 2"]4)(];)" ® (J;)
n=0

> 3 73 NN
+ ZlAnez"(Jqu)[n]q[ZJ; +n—1,(J7) e ;)"

00
+ ZAneZh(Jf?@Jg)(J;-)n ® (Jq—)nJ;- )
n=0

On the other hand, the right-hand side of the equation is given by
ZAHEZh(J(?@Jj)(J;-)" ® (Jq’-)n(];» ® ezhf +1® J+)
=0

00 o0
_ ZAnezh(J,;@Jg)(J;.)nH ® (Jq_)nezhjg + ZAneZh(chan)(J;)n ® (Jq_)nJ+
n=0 n=0

oo o0
_ ZAnezh(J;@Jg)(J;)nH ® qzneth q—)n + ZAnezh(ngg)(J;)n ® (J_)nJ+_
n=0 n=0

If we equate both sides, a very simple expression results, namely
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ZAnEZIz(.Ig@J;)(J;- ® e—?,th)(J;)n ® (J,;)n
=0

X 3 3 n —\N
+ z;AneZh(qu’Jq)[n]q[ZJ;’ +n—1,(IN)"® ;)

_ ZAneZh(J;@J;)(I ® aneZhJ;)(J;)rH-l ® (Jq—)n .
=0

Changing the limit on the second sum, and putting all terms onto the left-hand side,
the following equation results:

o0
Z( A, ezh(J;@Jg)(l ® e~ 2T ® o2} an)
n=0

3 3 n —
+ Apir O 4 1] 203 0 )T © (7;) =0

In a slightly different form, thisis

o
S PRSI (g (1@ (g7 M0 — ¢ ™R) + Ay - [+ 1],
n=0

n 2RI} ~n —2hJ
This equation holds precisely when the following equation is satisfied:

Anqn = An+l[n + 1]q(q - q_l)—l .

Thisis proved in Lemma 4.
To prove (5.2) and (5.3), the following theorem is required.

THEOREM

n - —r(n=r)h | r rhJ} -
apy = 3o ] e e,
r= 9

A(Jq)nzzoe (n )h{r} 62(11 )hfq(Jq) ®(Jq)n ,
r= q

n

sy =3 (")wrey.

r=0

These can be proved by induction on n. Only the second identity will be shown.
Using (2) and the homomorphism property of A, one has
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AU = AUDAJ !

q q q
- ——ZhJ - ~rlk=1=r)h k-1
=, ®@l+e®J;) Ze
r=0 q
i e—-2(k-—l-r)lz]3 (Jq—)r ® (Jq_)k 1-r
k—1 —1 ,
Z e r(k—1-r)h [ . :I J~e—2(k——l~—r)h.fq (J;)r ® (Jq—)k—l—r
r=0 g

e’ rnh k-1 —2k—=r)hJ? [ y—\T —\k—r
+z; (k—1— )l[ Jez(k W”(Jq) ® (J7).
r= q

Using the identity

S - 34 —- 3 — = le—1—
e?,(k 1 r)hJJ 2k—1-)hJ;} _ qu 2(k-1 r)h,

the equation above becomes

& 2)(k—1—r)h k-1 2k—1-r)n13 r+1 k—1—
wavw[r]fvﬂwg)®w>'
r=0 q

—r —-r -1 —2{k—rYhJ3 r 7=\ —\k=r
+Ze (k—1— )hI: } 82(k )th(Jq) ®(Jq)
q

k-1
_ Ze-—(r—!—l)(k r)h{

r—1
k—1
+ e—-Zkh]g ® (J(;)k + Ze—r(k—l—r)h[ . J e—Z(k—r)hJ‘; (Jq—)r ® (J—)k—r
= q

:| -2(k—r)h]3 (J(—]—)r ® (J‘;)k_r

k-1 —
— Z e—r(k—r)h-(k—r)h-+—(k—r)he—(k-r)h [l: 11 jl e—z(k—r)hjg (Jq—)r®(.]q—)k—r+ (Jq-)k®1
= q

k=1 _

+e M g ( Jq-)k n Z orlk=1=rYh=rh jrh {k 1} =2 I el Jq-)k—r
¥

q

r=1
k—1 k—1
_)k ®1+ Ze—r(k—r)h(e—-(k—r)h': J
r=1 q

k-1
*”[r]wmﬂﬂmwuﬁ*wﬁmmrf
9

Using the identity
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r _k[r—lJ r_k[r—l]
=4q +q )
HEG IS )

which follows from the usual g-binomial coefficient identity, Lemma 5, by repla-
cing g with g~! and using [n] ¢ = [n],-1, the equation above takes the form

k S etk [ K
;) ®1+2e"’< *’>'[ p

r} e—2(k—r)h];;’ (J‘-]—)r ® (J—)k—r + e-ZkhJ; ® (Jq—)k
q

r=0 r

k
=y el {k } e MY @ (U
q

Itisrequired to prove that
(A®id)R = Ri3Ry3.

Here, R is the R-matrix given in (8). To evaluate the left-hand side, we use the iden-
tity for A(J;)k given above, then withn =m + r,

- n ; n-—r -
(A@id)R=> Ax(A®idHVi®)) 3" etk { r} (T @™ (TR (J;)"
n r=0 q

- 8211(J3®1®J3+!®13®J;) Z Am+rq~rm [m + r] (1 ® quJ;; ® 1)((J;)r
mlq

® ()" ® )",
Using the definitions

o0
Ry; = e?Ui®187)) S AN ele ;)

n=0

Rys = 187307 ZAn(l ®(U))eV,)",
n=0

the product R3 - Ry is given by
eZh(]g@l@]g) ZAn(J;)n Q1® (Jq_)ne2h(l®lg®fg)Am(l ® (J;-)m ® (J;)M)

mpn

_ eZh(13®l®J$+l®Jg®J,§) ZAnAm(l ® anJf]’ ® 1)((];)" ® (J;L)m ® (Jq—)n+m> .
nm

To show that both sides of (5.2) are equal, it then suffices to show that

_mn[n+m

q
m

}Am-}.n = AmAn .
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Thisisjust Lemma4.2.
Finally to verify the identity
(id ® A)R = R;3R;2,

one requires the identity for A(J;)", thenwithn = m +r,

m-+r
(id ® A)R = A, (id@ )Y " g { r ] Y eq Iy @ ()"
n r q

m-+r r
_ Z Am+rq—rm(id®A)e?}z(13®J3) |: . ] (J;)m+r®q-2m13 (Jz;) ®(J;)m
mr q9

= PHREREITREION) N 4 g [m ;F r] (1©q 2% @ 1)((JF)"™"
q9

myr

Recall that
Riy = 51 Y A @ 18 ()"
and
Ry, = 2387380 ZAM(J;“)'" @) "®l.
Then, the right-hand side is given by the expression
RIASEYA) S A4 @18 (J;)nezhu:@f;@l) S Aan(T" R J) @1

_ ezh(13®1®13+13®13®1) ZAnAm(l ® q-znjg ®1)- (J;-)n-i-m ® (Jq-)m ® (Jq—)n.

nm

Both sides are equal again by Lemma 4.

4. Physical application-g-rotator model

In addition to the deep algebraic structure presented here, it is worthwhile to
show that the quantum group SU,(2) has a useful physical application. Consider
the g-rotator model, which is an exactly solvable system. This is the g deformation
of the usual rigid rotator model with the quantum group symmetry SU,(2). To treat
this system, it is necessary to write down the Hamiltonian for the system [7]. This
Hamiltonian is given as follows:

Cr
H‘I,rot :hzz_lq, (13)

where C; 4 is the Casimir operator for the quantum group SU,(2):

Crg=J; T+, + 1, +1],. (14)
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Also, the J%, J3 are generators of SU,(2) and can be realized in terms of generators
of the SU(2) in the following way:

. ([ﬂ -1 —ﬂq) T

! (P +NIP=1-))

(P -1\
Yo =) ((ﬁ +j><J3—1—j)>

3_ 13
J, =7,
where j is an operator formally expressed as follows:

- 1 | Sinh")’ 1 2 1/2
] = '—'2-+ Slnh ( ~ (ijq + l:i} q) .

When g is not a root of unity, it is easy to see that the representation of SU,(2)
may be those of SU(2) up to a phase. If gis a root of unity, the approach must be dif-
ferent. Consequently, the representations, in coordinates, of SU,(2) can be chosen
as spherical harmonics,

D (F) = You(6,p) .

This means the representations of the quantum group SU,(2) are completely redu-
cible, while the action of the Casimir operator Cy 4 yields

Crgbme = [T+ 11, 1J], %5 -

The g-rotator model is typically applied to diatomic molecules, and the results here
will be especially relevant to molecules consisting of unlike atoms such that there is
a significant internal dipole moment. By considering the dipole transition matrix
elements [10], it is found from the orthogonality of the spherical harmonics that the
matrix elements vanish unless AJ = £1. The selection rule of the emission
(absorption) of the g-rotator model is then AJ = +1. The emission absorption
spectrum is given by

Egrot(J 4+ 1) — Egroi(J)

Av = e

=B+ 1,7 +2),- [J+1],17],),

where B = h/8n*Ic. Using the definition of [x] ;> this can be written in a way which
is more suitable for calculations:

PV — g2 sinh 2y (J + 1)
qg—q! - sinhy '

[+ 1],V +2), -] =

Substituting, one has
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Table 1
A fit for the Lyman 0-2 R band in the H; molecule using equation vy = 81153.35, H = —2259.29
and g = 2.91187. The starred numbers have been interpolated. ~

J v ; Vexp [V — Vexp |
0 82155.24 82155.24 0

1 82949.33 82125.75 823.6
2 83370.93 82026.75* 1344.2
3 83332.60 81861.90* 1470.7
4 82842.29 81631.51* 1210.8
5 82001.69 81337.61* 664.1
6 80985.14 80985.14 0

7 80003.48 80572.64 569.2
8 79260.30 80102.64* 842.3
9 78909.75 79588.80 679.1
10 79024.53 79024.53 0

Av = Bsmh(:;;]f D) _ Hsinh(2y(J +1)) = Asin@g(J + 1)), (15)

where 4 = iH. By fitting the parameters g and 4 accordingly, values for the emis-
sion-absorption spectrum can be calculated and compared to the corresponding
experimental values.

Two fits have been performed, first on the molecule H,, and then on the molecule
HCI, (Tables 1 and 2). The molecule H; is symmetric, and distorted largely by rota-
tion and the dipole moment should play less of a role than in the molecule HCI,
which has a rather strong moment. Consequently, we would expect eq. (15) to work
most consistently on HCI. In spite of this, the numbers for H, in Table 1 provide a
surprisingly good fit to the R-branch of the 0-2 band. The numbers obtained from

Table2
A fit for the emission (absorption) spectrum of HCI using v = Hsin(2g(J + 1)) with the values
H =967.49 (cm™!) and g = 0.010744. The experimental numbers are from Herzberg [10].

J 14 chp ] V- Vexp [
0 20.787

1 41.566

2 62.325

3 88.055 83.03 0.03
4 103.747 104.1 0.35
5 124.391 1243 0.91
6 144.977 145.03 0.53
7 165.497 165.51 0.01
8 185.940 185.86 0.08
9 206.298 206.06 0.08
10 226.560 226.50 0.06
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(15) for the molecule HCI provide a much more consistent fit, and are relatively
accurate. The experimental numbers for H; are from the paper by Dabrowski [11]
and the experimental numbers for HCl are found in Herzberg[12].

Appendix

LEMMA 1
[J;, (J;!:)n] = in('};t)n .

The proof is by induction on n. Taking the equation above as the induction hypoth-
esis, one has

2, U = DU = (T,

737 =1 n—1 43/ r+ +yn=1 73 y+ +3\n 73
= LU - U RO+ )T - )

= (-1 + T =0

LEMMA?2

U () = [,[20; +n—1],(7;)"

The proof is by induction on n. Suppose this equation holdsupton — 1. Consider

) =W )+ )

= [n— 1], 1277 + n =2, (J7)" + (7)) 277, -

Since
3 3
27, —2J;

q q

31 _
[ZJq]q_ q_q—l

and using

—\n— n— 3,y \n— —\n—1 _— —2(n— —\n—
() g7 = Vg (1) () g = g e ey

and simplifying, one obtains

273 4+2n—1 -2J3-1 —2J34+1 —2J3—
qq+ —qg i —gq P +q Jg 2n+1(

—\h—1
(g—a")g—-q™") 7y

Vs )" =

= [n]q[ZJ; +n-— l]q(Jq_)"—1 .



P. Bracken/ The quantum group SU, 229

LEMMA 3
The following commutators are required to use in the first lemma, so that the
exponentials can be permuted. First,
e Jfe = Ien=Ufel=ie)(1eJ).
This implies that

e—2h(.f3®]3)(J;» ® l)ezh(f,;@u;) — (J;« ® 1)6—2h(1®fg) — (J; ®1)- (1 ® e—th;)_

Similarly,
3 3 3
V@, @It = e, T = (et - (J;®1).
This implies that

2RI (] J;)e%(f.iwf?) =1eJ;.

LEMMA 4.1
A" = Apnln+ 1, (g -7
Expanding, one obtains

(1) (n42)/2 (7 _ 2yl
-l g (1-g7%)
Apiln+1],(g—g ) ' =

weiln F 11 SN

n+1,(g-q") " ="

LEMMA 4.2
n-+m
q_mn [ :|Am+n - AmAn .
m

Substituting for 4,,,, on the left-hand side,
[n+ m]q! gurmmnt)/2(] _ g=2ymn

[n],!{m],! [m + n],!

o (1—g 2"

M’ +m+n
q :q(+++)/2

(1],

= AmdAn.

LEMMASS

r _k[r—l} r_k[r—l]
HEE )

By a direct calculation
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R R e
ric [r_l]q! g —q*
R

r—1
zqr—k[k 1} '
T g

Notice that if one replaces ¢ by ¢~! and then uses [k] g = k], one obtains the
result

MR Rtk

k 7 k q k-1 q
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